Why an async function takes more time to execute than a sync one? - javascript

I wrote two recursive functions that sum numbers from a array. They do the same thing, one asynchronously and the other synchronously. The async function took about 9x the time the sync one did.
Shouldn't the async function take advantage from the fact of running more tasks at the same time?
The functions
// Asynchronously sum the numbers in array
async function sumAsync(arr){
if(arr.length == 1) return arr[0];
const half = arr.length/2;
// Numbers on the left half
const left = arr.filter((e, i) => {
return i < half;
});
// Numbers on the right half
const right = arr.filter((e, i) => {
return i >= half;
});
// Recursive call
const leftR = sumAsync(left);
const rightR = sumAsync(right);
// Wait for resolves
await Promise.all([leftR, rightR]);
return await leftR + await rightR;
}
// Synchronously sum the numbers in array
function sumSync(arr){
if(arr.length == 1) return arr[0];
const half = arr.length/2;
// Numbers on the left half
const left = arr.filter((e, i) => {
return i < half;
});
// Numbers on the right half
const right = arr.filter((e, i) => {
return i >= half;
});
// Recursive call
const leftR = sumSync(left);
const rightR = sumSync(right);
return leftR + rightR;
}
Testing them
(async () => {
const LENGTH = 1048576; // 1024^2
const arr = Array.from(Array(LENGTH), num => Math.random()*10 | 0);
// arr[1048576] <- random (0 ~ 9)
// Async sum
console.log('ASYNC');
before = Date.now();
console.log(`SUM: ${await sumAsync(arr)}`);
after = Date.now();
console.log(`TIME: ${after - before} ms`);
// Sync sum
console.log('SYNC');
before = Date.now();
console.log(`SUM: ${sumSync(arr)}`);
after = Date.now();
console.log(`TIME: ${after - before} ms`);
})();
Results
// ASYNC
// SUM: 4720832
// TIME: 5554 ms
// SYNC
// SUM: 4720832
// TIME: 613 ms

The return value of an async function is always a Promise, even if the function only carries out synchronous operations, and the await (or .then) of a Promise will only run what follows during a microtask (after the current synchronous code is finished running). With a large array, that'll result in a lot of unnecessary microtasks wrapping synchronous code.
When nothing actual asynchronous is going on, this is just extra baggage, and results in additional processing time and power required.
Shouldn't the async function take advantage from the fact of running more tasks at the same time?
Javascript is single-threaded, even with async functions. If multiple async functions are called at once, only one path through the code may be "active" at any one time. If the total processing time required for all tasks is, say, 1000 ms, in standard Javascript, there's no way around spending at least 1000 ms.
You're not actually running more tasks at the same time - you're just wrapping the tasks in Promises (unnecessarily), while doing the same work.
For truly parallel actions, you'll have to use something provided by your current environment, such as child_process in Node, or a web worker.

Short version: async doesn't do more than one thing at a time. It switches between tasks (with overhead for each switch) in a queue, and when one task blocks, it hands control off to another (with overhead for the switch, and requeueing the blocked task when it unblocks).
Long version: Async doesn't mean parallel processing, it means interleaved (concurrent, cooperative) processing. JavaScript is still single-threaded even with async usage, and all of the actual work you do is purely CPU bound. In fact, your only real concurrency is that the async code will be scheduling, pausing and resuming your recursive calls repeatedly (but still only doing work for one at a time), while the sync code will just do them in order as fast as possible, with no event loop involvement.
The benefit of async code is that when blocking I/O (including stuff like waiting on user input) is being performed, that task can be suspended until it's unblocked by some out-of-band signal (I/O done, user clicked mouse, whatever), and other tasks can run. The benefit is in reaping the benefits of concurrent (but not parallel) processing in situations where most tasks, most of the time, are waiting for something, so the few that are ready to run can begin running immediately (and since they're usually not running, the overhead of task switching doesn't matter much; most of the time, there's nothing to switch to, so much of the overhead is paid when you've got nothing better to do). But it's definitely higher overhead than just doing number-crunching without a pause.

Related

does microtask queue instructions have higher priority than root-level instructions? [duplicate]

I wrote a simple function that returns Promise so should be non-blocking (in my opinion). Unfortunately, the program looks like it stops waiting for the Promise to finish. I am not sure what can be wrong here.
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
})
}
console.log("before")
longRunningFunc(1000, 3).then((res) => {
console.log("Result: " + res)
})
console.log("after")
The output looks like expected:
before // delay before printing below lines
after
Result: 5000049900000
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
Wrapping code in a promise (like you've done) does not make it non-blocking. The Promise executor function (the callback you pass to new Promise(fn) is called synchronously and will block which is why you see the delay in getting output.
In fact, there is no way to create your own plain Javascript code (like what you have) that is non-blocking except putting it into a child process, using a WorkerThread, using some third party library that creates new threads of Javascript or using the new experimental node.js APIs for threads. Regular node.js runs your Javascript as blocking and single threaded, whether it's wrapped in a promise or not.
You can use things like setTimeout() to change "when" your code runs, but whenever it runs, it will still be blocking (once it starts executing nothing else can run until it's done). Asynchronous operations in the node.js library all use some form of underlying native code that allows them to be asynchronous (or they just use other node.js asynchronous APIs that themselves use native code implementations).
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
As I said above, wrapping things in promise executor function doesn't make them asynchronous. If you want to "shift" the timing of when things run (thought they are still synchronous), you can use a setTimeout(), but that's not really making anything non-blocking, it just makes it run later (still blocking when it runs).
So, you could do this:
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
setTimeout(() => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
}, 10);
})
}
That would reschedule the time consuming for loop to run later and might "appear" to be non-blocking, but it actually still blocks - it just runs later. To make it truly non-blocking, you'd have to use one of the techniques mentioned earlier to get it out of the main Javascript thread.
Ways to create actual non-blocking code in node.js:
Run it in a separate child process and get an asynchronous notification when it's done.
Use the new experimental Worker Threads in node.js v11
Write your own native code add-on to node.js and use libuv threads or OS level threads in your implementation (or other OS level asynchronous tools).
Build on top of previously existing asynchronous APIs and have none of your own code that takes very long in the main thread.
The executor function of a promise is run synchronously, and this is why your code blocks the main thread of execution.
In order to not block the main thread of execution, you need to periodically and cooperatively yield control while the long running task is performed. In effect, you need to split the task into subtasks, and then coordinate the running of subtasks on new ticks of the event loop. In this way you give other tasks (like rendering and responding to user input) the opportunity to run.
You can either write your own async loop using the promise API, or you can use an async function. Async functions enable the suspension and resumation of functions (reentrancy) and hide most of the complexity from you.
The following code uses setTimeout to move subtasks onto new event loop ticks. Of course, this could be generalised, and batching could be used to find a balance between progress through the task and UI responsiveness; the batch size in this solution is only 1, and so progress is slow.
Finally: the real solution to this kind of problem is probably a Worker.
const $ = document.querySelector.bind(document)
const BIG_NUMBER = 1000
let count = 0
// Note that this could also use requestIdleCallback or requestAnimationFrame
const tick = (fn) => new Promise((resolve) => setTimeout(() => resolve(fn), 5))
async function longRunningTask(){
while (count++ < BIG_NUMBER) await tick()
console.log(`A big number of loops done.`)
}
console.log(`*** STARTING ***`)
longRunningTask().then(() => console.log(`*** COMPLETED ***`))
$('button').onclick = () => $('#output').innerHTML += `Current count is: ${count}<br/>`
* {
font-size: 16pt;
color: gray;
padding: 15px;
}
<button>Click me to see that the UI is still responsive.</button>
<div id="output"></div>

When Promises block execution [duplicate]

I wrote a simple function that returns Promise so should be non-blocking (in my opinion). Unfortunately, the program looks like it stops waiting for the Promise to finish. I am not sure what can be wrong here.
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
})
}
console.log("before")
longRunningFunc(1000, 3).then((res) => {
console.log("Result: " + res)
})
console.log("after")
The output looks like expected:
before // delay before printing below lines
after
Result: 5000049900000
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
Wrapping code in a promise (like you've done) does not make it non-blocking. The Promise executor function (the callback you pass to new Promise(fn) is called synchronously and will block which is why you see the delay in getting output.
In fact, there is no way to create your own plain Javascript code (like what you have) that is non-blocking except putting it into a child process, using a WorkerThread, using some third party library that creates new threads of Javascript or using the new experimental node.js APIs for threads. Regular node.js runs your Javascript as blocking and single threaded, whether it's wrapped in a promise or not.
You can use things like setTimeout() to change "when" your code runs, but whenever it runs, it will still be blocking (once it starts executing nothing else can run until it's done). Asynchronous operations in the node.js library all use some form of underlying native code that allows them to be asynchronous (or they just use other node.js asynchronous APIs that themselves use native code implementations).
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
As I said above, wrapping things in promise executor function doesn't make them asynchronous. If you want to "shift" the timing of when things run (thought they are still synchronous), you can use a setTimeout(), but that's not really making anything non-blocking, it just makes it run later (still blocking when it runs).
So, you could do this:
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
setTimeout(() => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
}, 10);
})
}
That would reschedule the time consuming for loop to run later and might "appear" to be non-blocking, but it actually still blocks - it just runs later. To make it truly non-blocking, you'd have to use one of the techniques mentioned earlier to get it out of the main Javascript thread.
Ways to create actual non-blocking code in node.js:
Run it in a separate child process and get an asynchronous notification when it's done.
Use the new experimental Worker Threads in node.js v11
Write your own native code add-on to node.js and use libuv threads or OS level threads in your implementation (or other OS level asynchronous tools).
Build on top of previously existing asynchronous APIs and have none of your own code that takes very long in the main thread.
The executor function of a promise is run synchronously, and this is why your code blocks the main thread of execution.
In order to not block the main thread of execution, you need to periodically and cooperatively yield control while the long running task is performed. In effect, you need to split the task into subtasks, and then coordinate the running of subtasks on new ticks of the event loop. In this way you give other tasks (like rendering and responding to user input) the opportunity to run.
You can either write your own async loop using the promise API, or you can use an async function. Async functions enable the suspension and resumation of functions (reentrancy) and hide most of the complexity from you.
The following code uses setTimeout to move subtasks onto new event loop ticks. Of course, this could be generalised, and batching could be used to find a balance between progress through the task and UI responsiveness; the batch size in this solution is only 1, and so progress is slow.
Finally: the real solution to this kind of problem is probably a Worker.
const $ = document.querySelector.bind(document)
const BIG_NUMBER = 1000
let count = 0
// Note that this could also use requestIdleCallback or requestAnimationFrame
const tick = (fn) => new Promise((resolve) => setTimeout(() => resolve(fn), 5))
async function longRunningTask(){
while (count++ < BIG_NUMBER) await tick()
console.log(`A big number of loops done.`)
}
console.log(`*** STARTING ***`)
longRunningTask().then(() => console.log(`*** COMPLETED ***`))
$('button').onclick = () => $('#output').innerHTML += `Current count is: ${count}<br/>`
* {
font-size: 16pt;
color: gray;
padding: 15px;
}
<button>Click me to see that the UI is still responsive.</button>
<div id="output"></div>

Promise control flow [duplicate]

I wrote a simple function that returns Promise so should be non-blocking (in my opinion). Unfortunately, the program looks like it stops waiting for the Promise to finish. I am not sure what can be wrong here.
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
})
}
console.log("before")
longRunningFunc(1000, 3).then((res) => {
console.log("Result: " + res)
})
console.log("after")
The output looks like expected:
before // delay before printing below lines
after
Result: 5000049900000
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
Wrapping code in a promise (like you've done) does not make it non-blocking. The Promise executor function (the callback you pass to new Promise(fn) is called synchronously and will block which is why you see the delay in getting output.
In fact, there is no way to create your own plain Javascript code (like what you have) that is non-blocking except putting it into a child process, using a WorkerThread, using some third party library that creates new threads of Javascript or using the new experimental node.js APIs for threads. Regular node.js runs your Javascript as blocking and single threaded, whether it's wrapped in a promise or not.
You can use things like setTimeout() to change "when" your code runs, but whenever it runs, it will still be blocking (once it starts executing nothing else can run until it's done). Asynchronous operations in the node.js library all use some form of underlying native code that allows them to be asynchronous (or they just use other node.js asynchronous APIs that themselves use native code implementations).
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
As I said above, wrapping things in promise executor function doesn't make them asynchronous. If you want to "shift" the timing of when things run (thought they are still synchronous), you can use a setTimeout(), but that's not really making anything non-blocking, it just makes it run later (still blocking when it runs).
So, you could do this:
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
setTimeout(() => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
}, 10);
})
}
That would reschedule the time consuming for loop to run later and might "appear" to be non-blocking, but it actually still blocks - it just runs later. To make it truly non-blocking, you'd have to use one of the techniques mentioned earlier to get it out of the main Javascript thread.
Ways to create actual non-blocking code in node.js:
Run it in a separate child process and get an asynchronous notification when it's done.
Use the new experimental Worker Threads in node.js v11
Write your own native code add-on to node.js and use libuv threads or OS level threads in your implementation (or other OS level asynchronous tools).
Build on top of previously existing asynchronous APIs and have none of your own code that takes very long in the main thread.
The executor function of a promise is run synchronously, and this is why your code blocks the main thread of execution.
In order to not block the main thread of execution, you need to periodically and cooperatively yield control while the long running task is performed. In effect, you need to split the task into subtasks, and then coordinate the running of subtasks on new ticks of the event loop. In this way you give other tasks (like rendering and responding to user input) the opportunity to run.
You can either write your own async loop using the promise API, or you can use an async function. Async functions enable the suspension and resumation of functions (reentrancy) and hide most of the complexity from you.
The following code uses setTimeout to move subtasks onto new event loop ticks. Of course, this could be generalised, and batching could be used to find a balance between progress through the task and UI responsiveness; the batch size in this solution is only 1, and so progress is slow.
Finally: the real solution to this kind of problem is probably a Worker.
const $ = document.querySelector.bind(document)
const BIG_NUMBER = 1000
let count = 0
// Note that this could also use requestIdleCallback or requestAnimationFrame
const tick = (fn) => new Promise((resolve) => setTimeout(() => resolve(fn), 5))
async function longRunningTask(){
while (count++ < BIG_NUMBER) await tick()
console.log(`A big number of loops done.`)
}
console.log(`*** STARTING ***`)
longRunningTask().then(() => console.log(`*** COMPLETED ***`))
$('button').onclick = () => $('#output').innerHTML += `Current count is: ${count}<br/>`
* {
font-size: 16pt;
color: gray;
padding: 15px;
}
<button>Click me to see that the UI is still responsive.</button>
<div id="output"></div>

Javascript async array manipulation blocks UI [duplicate]

I wrote a simple function that returns Promise so should be non-blocking (in my opinion). Unfortunately, the program looks like it stops waiting for the Promise to finish. I am not sure what can be wrong here.
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
})
}
console.log("before")
longRunningFunc(1000, 3).then((res) => {
console.log("Result: " + res)
})
console.log("after")
The output looks like expected:
before // delay before printing below lines
after
Result: 5000049900000
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
Wrapping code in a promise (like you've done) does not make it non-blocking. The Promise executor function (the callback you pass to new Promise(fn) is called synchronously and will block which is why you see the delay in getting output.
In fact, there is no way to create your own plain Javascript code (like what you have) that is non-blocking except putting it into a child process, using a WorkerThread, using some third party library that creates new threads of Javascript or using the new experimental node.js APIs for threads. Regular node.js runs your Javascript as blocking and single threaded, whether it's wrapped in a promise or not.
You can use things like setTimeout() to change "when" your code runs, but whenever it runs, it will still be blocking (once it starts executing nothing else can run until it's done). Asynchronous operations in the node.js library all use some form of underlying native code that allows them to be asynchronous (or they just use other node.js asynchronous APIs that themselves use native code implementations).
But the program waits before printing second and third lines. Can you explain what should be the proper way to get "before" and "after" printed first and then (after some time) the result?
As I said above, wrapping things in promise executor function doesn't make them asynchronous. If you want to "shift" the timing of when things run (thought they are still synchronous), you can use a setTimeout(), but that's not really making anything non-blocking, it just makes it run later (still blocking when it runs).
So, you could do this:
function longRunningFunc(val, mod) {
return new Promise((resolve, reject) => {
setTimeout(() => {
sum = 0;
for (var i = 0; i < 100000; i++) {
for (var j = 0; j < val; j++) {
sum += i + j % mod
}
}
resolve(sum)
}, 10);
})
}
That would reschedule the time consuming for loop to run later and might "appear" to be non-blocking, but it actually still blocks - it just runs later. To make it truly non-blocking, you'd have to use one of the techniques mentioned earlier to get it out of the main Javascript thread.
Ways to create actual non-blocking code in node.js:
Run it in a separate child process and get an asynchronous notification when it's done.
Use the new experimental Worker Threads in node.js v11
Write your own native code add-on to node.js and use libuv threads or OS level threads in your implementation (or other OS level asynchronous tools).
Build on top of previously existing asynchronous APIs and have none of your own code that takes very long in the main thread.
The executor function of a promise is run synchronously, and this is why your code blocks the main thread of execution.
In order to not block the main thread of execution, you need to periodically and cooperatively yield control while the long running task is performed. In effect, you need to split the task into subtasks, and then coordinate the running of subtasks on new ticks of the event loop. In this way you give other tasks (like rendering and responding to user input) the opportunity to run.
You can either write your own async loop using the promise API, or you can use an async function. Async functions enable the suspension and resumation of functions (reentrancy) and hide most of the complexity from you.
The following code uses setTimeout to move subtasks onto new event loop ticks. Of course, this could be generalised, and batching could be used to find a balance between progress through the task and UI responsiveness; the batch size in this solution is only 1, and so progress is slow.
Finally: the real solution to this kind of problem is probably a Worker.
const $ = document.querySelector.bind(document)
const BIG_NUMBER = 1000
let count = 0
// Note that this could also use requestIdleCallback or requestAnimationFrame
const tick = (fn) => new Promise((resolve) => setTimeout(() => resolve(fn), 5))
async function longRunningTask(){
while (count++ < BIG_NUMBER) await tick()
console.log(`A big number of loops done.`)
}
console.log(`*** STARTING ***`)
longRunningTask().then(() => console.log(`*** COMPLETED ***`))
$('button').onclick = () => $('#output').innerHTML += `Current count is: ${count}<br/>`
* {
font-size: 16pt;
color: gray;
padding: 15px;
}
<button>Click me to see that the UI is still responsive.</button>
<div id="output"></div>

Difference between Javascript async functions and Web workers?

Threading-wise, what's the difference between web workers and functions declared as
async function xxx()
{
}
?
I am aware web workers are executed on separate threads, but what about async functions? Are such functions threaded in the same way as a function executed through setInterval is, or are they subject to yet another different kind of threading?
async functions are just syntactic sugar around
Promises and they are wrappers for callbacks.
// v await is just syntactic sugar
// v Promises are just wrappers
// v functions taking callbacks are actually the source for the asynchronous behavior
await new Promise(resolve => setTimeout(resolve));
Now a callback could be called back immediately by the code, e.g. if you .filter an array, or the engine could store the callback internally somewhere. Then, when a specific event occurs, it executes the callback. One could say that these are asynchronous callbacks, and those are usually the ones we wrap into Promises and await them.
To make sure that two callbacks do not run at the same time (which would make concurrent modifications possible, which causes a lot of trouble) whenever an event occurs the event does not get processed immediately, instead a Job (callback with arguments) gets placed into a Job Queue. Whenever the JavaScript Agent (= thread²) finishes execution of the current job, it looks into that queue for the next job to process¹.
Therefore one could say that an async function is just a way to express a continuous series of jobs.
async function getPage() {
// the first job starts fetching the webpage
const response = await fetch("https://stackoverflow.com"); // callback gets registered under the hood somewhere, somewhen an event gets triggered
// the second job starts parsing the content
const result = await response.json(); // again, callback and event under the hood
// the third job logs the result
console.log(result);
}
// the same series of jobs can also be found here:
fetch("https://stackoverflow.com") // first job
.then(response => response.json()) // second job / callback
.then(result => console.log(result)); // third job / callback
Although two jobs cannot run in parallel on one agent (= thread), the job of one async function might run between the jobs of another. Therefore, two async functions can run concurrently.
Now who does produce these asynchronous events? That depends on what you are awaiting in the async function (or rather: what callback you registered). If it is a timer (setTimeout), an internal timer is set and the JS-thread continues with other jobs until the timer is done and then it executes the callback passed. Some of them, especially in the Node.js environment (fetch, fs.readFile) will start another thread internally. You only hand over some arguments and receive the results when the thread is done (through an event).
To get real parallelism, that is running two jobs at the same time, multiple agents are needed. WebWorkers are exactly that - agents. The code in the WebWorker therefore runs independently (has it's own job queues and executor).
Agents can communicate with each other via events, and you can react to those events with callbacks. For sure you can await actions from another agent too, if you wrap the callbacks into Promises:
const workerDone = new Promise(res => window.onmessage = res);
(async function(){
const result = await workerDone;
//...
})();
TL;DR:
JS <---> callbacks / promises <--> internal Thread / Webworker
¹ There are other terms coined for this behavior, such as event loop / queue and others. The term Job is specified by ECMA262.
² How the engine implements agents is up to the engine, though as one agent may only execute one Job at a time, it very much makes sense to have one thread per agent.
In contrast to WebWorkers, async functions are never guaranteed to be executed on a separate thread.
They just don't block the whole thread until their response arrives. You can think of them as being registered as waiting for a result, let other code execute and when their response comes through they get executed; hence the name asynchronous programming.
This is achieved through a message queue, which is a list of messages to be processed. Each message has an associated function which gets called in order to handle the message.
Doing this:
setTimeout(() => {
console.log('foo')
}, 1000)
will simply add the callback function (that logs to the console) to the message queue. When it's 1000ms timer elapses, the message is popped from the message queue and executed.
While the timer is ticking, other code is free to execute. This is what gives the illusion of multithreading.
The setTimeout example above uses callbacks. Promises and async work the same way at a lower level — they piggyback on that message-queue concept, but are just syntactically different.
Workers are also accessed by asynchronous code (i.e. Promises) however Workers are a solution to the CPU intensive tasks which would block the thread that the JS code is being run on; even if this CPU intensive function is invoked asynchronously.
So if you have a CPU intensive function like renderThread(duration) and if you do like
new Promise((v,x) => setTimeout(_ => (renderThread(500), v(1)),0)
.then(v => console.log(v);
new Promise((v,x) => setTimeout(_ => (renderThread(100), v(2)),0)
.then(v => console.log(v);
Even if second one takes less time to complete it will only be invoked after the first one releases the CPU thread. So we will get first 1 and then 2 on console.
However had these two function been run on separate Workers, then the outcome we expect would be 2 and 1 as then they could run concurrently and the second one finishes and returns a message earlier.
So for basic IO operations standard single threaded asynchronous code is very efficient and the need for Workers arises from need of using tasks which are CPU intensive and can be segmented (assigned to multiple Workers at once) such as FFT and whatnot.
Async functions have nothing to do with web workers or node child processes - unlike those, they are not a solution for parallel processing on multiple threads.
An async function is just1 syntactic sugar for a function returning a promise then() chain.
async function example() {
await delay(1000);
console.log("waited.");
}
is just the same as
function example() {
return Promise.resolve(delay(1000)).then(() => {
console.log("waited.");
});
}
These two are virtually indistinguishable in their behaviour. The semantics of await or a specified in terms of promises, and every async function does return a promise for its result.
1: The syntactic sugar gets a bit more elaborate in the presence of control structures such as if/else or loops which are much harder to express as a linear promise chain, but it's still conceptually the same.
Are such functions threaded in the same way as a function executed through setInterval is?
Yes, the asynchronous parts of async functions run as (promise) callbacks on the standard event loop. The delay in the example above would implemented with the normal setTimeout - wrapped in a promise for easy consumption:
function delay(t) {
return new Promise(resolve => {
setTimeout(resolve, t);
});
}
I want to add my own answer to my question, with the understanding I gathered through all the other people's answers:
Ultimately, all but web workers, are glorified callbacks. Code in async functions, functions called through promises, functions called through setInterval and such - all get executed in the main thread with a mechanism akin to context switching. No parallelism exists at all.
True parallel execution with all its advantages and pitfalls, pertains to webworkers and webworkers alone.
(pity - I thought with "async functions" we finally got streamlined and "inline" threading)
Here is a way to call standard functions as workers, enabling true parallelism. It's an unholy hack written in blood with help from satan, and probably there are a ton of browser quirks that can break it, but as far as I can tell it works.
[constraints: the function header has to be as simple as function f(a,b,c) and if there's any result, it has to go through a return statement]
function Async(func, params, callback)
{
// ACQUIRE ORIGINAL FUNCTION'S CODE
var text = func.toString();
// EXTRACT ARGUMENTS
var args = text.slice(text.indexOf("(") + 1, text.indexOf(")"));
args = args.split(",");
for(arg of args) arg = arg.trim();
// ALTER FUNCTION'S CODE:
// 1) DECLARE ARGUMENTS AS VARIABLES
// 2) REPLACE RETURN STATEMENTS WITH THREAD POSTMESSAGE AND TERMINATION
var body = text.slice(text.indexOf("{") + 1, text.lastIndexOf("}"));
for(var i = 0, c = params.length; i<c; i++) body = "var " + args[i] + " = " + JSON.stringify(params[i]) + ";" + body;
body = body + " self.close();";
body = body.replace(/return\s+([^;]*);/g, 'self.postMessage($1); self.close();');
// CREATE THE WORKER FROM FUNCTION'S ALTERED CODE
var code = URL.createObjectURL(new Blob([body], {type:"text/javascript"}));
var thread = new Worker(code);
// WHEN THE WORKER SENDS BACK A RESULT, CALLBACK AND TERMINATE THE THREAD
thread.onmessage =
function(result)
{
if(callback) callback(result.data);
thread.terminate();
}
}
So, assuming you have this potentially cpu intensive function...
function HeavyWorkload(nx, ny)
{
var data = [];
for(var x = 0; x < nx; x++)
{
data[x] = [];
for(var y = 0; y < ny; y++)
{
data[x][y] = Math.random();
}
}
return data;
}
...you can now call it like this:
Async(HeavyWorkload, [1000, 1000],
function(result)
{
console.log(result);
}
);

Categories